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Al~met--The nonlinear instability of the isothermal draw of optical fibers from cylindric preforms is 
studied. The unsteady model of the process is solved numerically, accounting for the effects of inertia, 
gravity and surface forces. The effect of viscosity and gravity on the nonlinear stability of the process is 
studied. The possibility of draw resonance occurring is shown for a rate ratio much lower than the critical 
one, obtained when solving the simplified model. The proposed solution can be used to study technological 
stability and to model the draw of fibers of other materials which behave as Newtonian fluids. 
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1. I N T R O D U C T I O N  

The draw of optical glass fibers from cylindric preforms or melt is characterized by mechanical 
disturbances which occur in the technological installation. They cause unevenness of the fiber radius 
length and velocity profile. 

A quasi one-dimensional model of the isothermal flow of a Newtonian fluid is considered when 
modelling the material behavior. A simplified model of draw is used and inertia and gravity, as 
well as surface tension, are usually disregarded. The equations, describing the time-dependent 
behavior of small disturbances in a steady state, have been derived and analyzed by Pearson & 
Matovich (1969), while Yarin (1987) gives numerical and asymptotic solutions. The draw of 
polymer fibers from melt has been analyzed by Ishihara & Kase (1975, 1976). They solve the 
unsteady problem numerically and study the draw resonance under the same simplifications and 
by using an explicit scheme. Berman & Yarin (1983) propose an analytical solution and determine 
the critical value of the draw ratio. 

The effect of gravity and viscous and surface forces on the draw linear instability is studied by 
Shah & Pearson (1972). 

2. M A T H E M A T I C A L  M O D E L  

The study of the draw of glass fibers from melt and from cylindric preforms, accounting for 
inertia and gravity and surface tension, and considering isothermal draw conditions, requires the 
solution of the unsteady equations of motion and continuity. For vertical draw they have the 
following form: 

pr  2 -t- v ~xx = ~xx (r2" xxx) + pgr + ~ -~x [1] 

and 

where 

63r 2 
~-7 + ~x (r2v) = 0, [2] 

t~v 
Z~x = 3r/~xx [3] 

is the viscous stress tensor. 
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The following notations are used: t -- t ime; x---coordinate along the fiber symmetry axis; r --f iber  
radius; v--velocity along x; p and r /~densi ty and viscosity of the drawn vitreous mass; g - -Ear th ' s  
acceleration; a--coefficient of surface tension. 

The sign " + "  before the term containing g in [1] reflects the case when the direction of the draw 
and feed velocity coincides with that of gravity. 

Equations [1] and [2] are given in a dimensionless form by using the following scales: for 
time--L/v1; for velocity--v~/E; for the fiber radius--ro/Em; and for the x-coordinate--L.  The feed 
and draw velocities at the cross section x = 0 and x = L are denoted by v0 and vt, while the draw 
ratio is denoted by E = v~/Vo. L is length of  the drawn fiber (0 ~< x ~< L)  and r0 (at x = 0) is the 
preform or nozzle radius. 

The dimensionless velocity and fiber radius are denoted by V and R, while the notations for the 
coordinate x and time t are kept the same. Thus, the dimensionless equations of  the model are 
obtained: 

R2(OV v O V ~ = 3 ( N  • E) '/2 c3 (R2OV'~ 1 E'/2OR 
\--~ + Ox ] Re Ox \ -~x ] + Fr .  (N " E) '/2 R2 "t We Ox [41 

and 

aR 2 t9 
at + ~x (R2V) = 0. [5] 

The following criteria of  similarity are used in [4] and [5]: Re = (pvt r0)/q--the Reynolds number; 
Fr = v~/(gro)--the Froude number; and We = (prov~)/a--the Weber number. N = r~/(L2E) is a 
dimensionless parameter, characterizing the ratio 
dimensions. 

The initial and boundary conditions are given by 

R(0, t) = R0 = E 112 

v(o ,  t) = r o e  

V(1, t ) =  Vi = 1 

and 

between the transversal and longitudinal 

for x = 0, [6] 

for x = 0, [7] 

for x = 1 [8] 

R[x,O]=tp~(x), V(x,O)=tp2(x) for t=O.  [9] 

3. N U M E R I C A L  S O L U T I O N  

The unsteady model is treated numerically by using an implicit scheme of "Crank-Nicolson" 
type. Symmetric approximations of  the derivatives a V/Ox, aR/Ox and 02V/Ox 2 are used, where: 

~ V  Vi+ 1 - -  Vi_ I ~R R i +  1 - R i _  1 ~2V Vi+ 1 --2Vi--~- Vi_ l 
0x 2 -Ax  ' 0x 2 ' A X  ' ~X  2 A X  2 
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Figure 1. Self-sustained oscillations when surface forces are Figure 2. Draw resonance: curve 1--accounting for gravity; 
disregarded, curve 2--disregarding gravity. 
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Figure 3. Running waves along the surface of the formed 
fiber. 
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Figure 4. Development of forced harmonic disturbances in 
the draw velocity for a critical draw ratio. 

Here Ri = R ( x i ,  t), Vi = V(x i ,  t ) ,  xi = (i  - 1). Ax and i denotes the number of  a point within the 
discretized interval [0, 1]. 

The time derivatives of  R and V are approximated as 

d ( R ( x i ,  t ) )  ~ - -  R i  - -  ]~i  1~ i = R ( x i ,  t - -  At); 
dt  A t  ' 

where Ax and At are steps of  variation of  the dimensionless coordinates x and t. Due to the 
nonlinearity with respect to R and V, an iteration procedure with a time step At is used. The 
procedure terminates when a definite accuracy is attained. 

The initial distributions tpt(x ) and tp2(x ), obtained during the numerical solution of  the 
steady equations and corresponding to the initial model [1H7], are given at the moment 
t = 0 .  

A Fortran program is designed to solve the problem, where calculations with double 
precision are performed on a 486/50 MHzPC. A scheme with 200 steps along the spatial 
coordinate x is used and the time step At is determined after performing numerical 
experiments. 

4. N U M E R I C A L  RESULTS 

The proposed solution can be used for the study of  nonsteady processes, where the following 
conditions can subsequently substitute for either of  [6] or [7] for x = 0, or [8] for x = 1: 

R(0, t) = Ro(l -.I- 6R), [10] 

a stepwise disturbance of  the preform initial radius; 

R(0, t) = R0[l + &R. sin(o~ z t)], [11] 
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Figure 5. Draw resonance for harmonic disturbances of  the preform radius: (a) 0 ~< t ~< 200; 
(b) 0 ~< t ~< 50. 
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Figure 6. Spectral power corresponding to (a) figure 5(a) and (b) figure 5(b). 

a sinusoidal disturbance of  the preform initial radius; 

V(1, t) = V,(l + r V ) ,  [12] 

a stepwise disturbance of  the draw velocity; or 

V(1, t) = V~ [1 + 6V.  sin(co~ t)], [13] 

a sinusoidal disturbance of  the draw velocity; 

Draw velocity disturbances are given when studying self-sustained oscillations, while conditions 
[6] and [7] are kept. Moreover, condition [12], with AV = 0.05, is given for 0 ~< t ~< 2 instead of  
condition [8]. The frequency of  the forced harmonic disturbances in [11]-[13] is denoted by co~. 

Depending on the draw ratio E, the amplitudes of  the occurring oscillations decrease or grow. 
Self-sustained oscillations with a constant amplitude correspond to the critical draw ratio. The 
value E .  = 20.22, obtained by performing numerical experiments and disregarding the viscous, 
surface and gravity forces, agrees with the results of  the simplified solution (Pearson & Matovich 
1969; Gelder 1971; Berman & Yarin 1983). 

In the real case, the critical draw ratio and the corresponding circular frequency co are affected 
by the viscosity of the drawn vitreous mass and by the surface, gravity and inertia forces. Our 
numerical results are obtained on the basis of the following initial data: p = 3000 kg/m 3, 
tr = 0.25 N/m. The draw velocity is v~ = 0.05 m/s and the preform initial radius is r0 = 0.005 m. The 
corresponding dimensionless parameters are Fr = 0.051, We = 0.15 and L/ro = 50. The viscosity of 
the vitreous mass is assumed to be within the ranges 17 = 107 to l02 N .  s/m 2, in accordance with 
Doremus (1973), Pack & Kurkjian (1975) and P a e k &  Runk (1978). The following values of  Re 
correspond to these values: from Re = 7.5 x l0 -8 to 7.5 x 10 -3. 

Values of  the critical draw ratio and circular frequency are found for some characteristic viscosity 
values (in N .  s/m 2) by performing a numerical experiment: 

I 7 = 10 7, E = 20.25, o9 = 0.6903; 

17 = 10 6, E = 20.55, o9 = 0.6903; 

17=105 , E = 2 3 . 8 7 ,  o9=0.6673; 

17 = 10 4, E = 85.30, o9 = 0.5400. 

The results, given in figures 1-6, are obtained for a viscosity value r / =  105N.s /m 2 
(Re = 7.5 × 10-6). 

The change in R(1, t) is shown in figure 1, for self-sustained oscillations with a draw ratio 
E = 23.87. The surface forces are disregarded, i.e. tr = 0. 

The results given in figure 2 (curve 1) are obtained on the basis of  the assumption that the draw 
velocity is opposite to gravity (i.e. the sign in front of  the term containing g in [1] is a minus). The 
numerical data for curve 2 are obtained after disregarding gravity, i.e. g = 0. The circular 
frequencies for both cases are equal to co~ = 0.3451 and co2 = 0.5983, respectively. The oscillations 
are with increasing amplitude, which for curve 1 attains a value several times larger than the steady 
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radius value at x = 1. The comparison between the two curves shows that if gravity is opposite 
to the draw direction, larger amplitudes and smaller circular frequencies of resonance oscillations 
occur. 

Figure 3 shows the form of R(x) for some fixed time values. It is obtained under the same 
conditions as those in figure 2 (curve 1). The wave on the fiber surface is nonsteady and running 
along x. The change in the vertical draw direction yields not only draw resonance, but also a 
significant change in the shape and dimensions of the formed fiber (the latter is bounded by sections 
x = 0  and x = 1). 

It is of practical interest to study the solution stability for a periodic disturbance of draw velocity, 
caused by an imperfection in the draw mechanism. Condition [13] is used in this case. The 
development of R(1, t) for tOl = 1, 6V = 0.05, is given in figure 4. The frequency analysis shows 
two prevailing frequencies: the first one coincides with that of the external forced disturbances; 
while the second is co2 = 0.675---the frequency of the self-sustained oscillations. 

Periodic disturbances during draw from cylindric preforms can also be introduced as a result 
of an inaccuracy of the preform radius. This effect corresponds to condition [11] of the 
mathematical model. The development of forced periodic disturbances of the initial radius, with 
a frequency cot = 1 and amplitude AR = 0.005, is shown in figure 5(a); therein draw is opposite to 
gravity. Two frequencies with a close spectral power are observed for time values 0 ~< t ~< 50--figure 
5(b). These are the frequency of forced disturbances and the eigenfrequency ~o = 0.5522. The 
oscillations assume a character of draw resonance with time, where the eigenfrequency prevails. 
The results of the frequency analysis are shown in figure 6. The frequency spectral power is denoted 
by P(co) (Angot 1957). 

The numerical experiments confirm the conclusions of Shah & Pearson (1972) regarding the effect 
of gravity and surface forces on draw stability. As the calculations show, the draw velocity direction 
is essential for the stability of the vertical draw. Values of the critical draw ratio are listed below. 
They are obtained for different values of the viscosity of the vitreous mass and for the vertical draw 
(opposite to gravity). The rest of the parameters, included in the dimensionless model, are the same: 

r/= 10 7, E=20.11,  o~ =0.6903; 

= 10 6, E = 19.78, o~ = 0.6903; 

~l=105 E=16.88,  co=0.7210; 

t/=104 , E=14.33, 0~=0.7517; 

~/=103 , E=4.993, co=0.8437. 

5. CONCLUSIONS 

An algorithm for the analysis of draw nonlinear instability is proposed. It is based on an implicit 
scheme and considers the draw of fibers from cylindric preforms and melts. It also accounts for 
inertia, gravity and surface tension. The numerical solution allows for the estimation of limits, 
within which it is admissable to violate values of the initial radius, draw or feed velocity. Viscosity 
and gravity effects on the draw instability are also studied. 

The results show that resonance can occur for a draw ratio, significantly lower than the critical 
one, obtained by using the simplified model. The proposed solution can be used to model the draw 
of fibers of other materials which behave as Newtonian fluids. 
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